

Published on Web 04/22/2004

## A Simple Stereocontrolled Synthesis of Salinosporamide A

Leleti Rajender Reddy, P. Saravanan, and E. J. Corey\*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 Received March 10, 2004; E-mail: corey@chemistry.harvard.edu

Salinosporamide A (1) was recently discovered by Fenical and his group as a bioactive product of a marine microorganism that is widely distributed in ocean sediments.<sup>1</sup> Structurally it closely resembles the terrestrial microbial product omuralide<sup>2a</sup> (2a) that we synthesized several years ago and demonstrated to be a potent inhibitor of proteasome function.<sup>2</sup> Omuralide is generated by  $\beta$ -lactonization of the *N*-acetylcysteine thiolester lactacystin (2b) that was first isolated by the Omura group as a result of microbial screening for nerve growth factor-like activity.<sup>3</sup> Salinosporamide A is an even more effective proteasome inhibitor than omuralide, and, in addition, it displays surprisingly high in vitro cytotoxic activity against many tumor cell lines (IC<sub>50</sub> values of 10 nM or less). We report herein the first enantiospecific total synthesis of **1**.



The pathway of the synthesis of salinosporamide A is outlined in Scheme 1. (S)-Threonine methyl ester was N-acylated with





4-methoxybenzoyl chloride in CH<sub>2</sub>Cl<sub>2</sub> at 23 °C to form the amide 3(71%) which was then cyclized to oxazoline 4(80%) by heating at reflux in toluene with p-toluenesulfonic acid. Deprotonation of 4 with lithium diisopropylamide in THF and alkylation of the resulting enolate with chloromethyl benzyl ether afforded the required tertiary stereocenter of 5 selectively in 69% yield. Reduction of 5 with NaBH<sub>3</sub>CN-HOAc gave the N-4-methoxybenzylamine 6 (90%) which was then transformed in 96% yield to the *N*-acrylyl-*N*-PMB derivative (PMB = 4-methoxybenzyl) by the one-flask sequence: (1) reaction with Me<sub>3</sub>SiCl and Et<sub>3</sub>N to form the TMS ether, (2) acylation with acrylyl chloride at 0 °C, and (3) acidic work up with aqueous HCl. Dess-Martin periodinane oxidation of 7 produced the keto amide ester 8 in 96% yield. Cyclization of 8 to the  $\gamma$ -lactam 9 was accomplished by means of an internal Baylis-Hillman-aldol reaction<sup>4</sup> using quinuclidine as the catalytic base in dimethoxyethane at 0 °C for 7 d. The cyclization product, obtained in 90% yield, consisted of 9 and the  $C(\beta)$  diastereomer (10) in a ratio of 9:1. The *N*-benzyl analogue of 10 was obtained in crystalline form, mp = 136-7 °C, and was demonstrated to possess the stereochemistry shown for 10 by singlecrystal X-ray diffraction analysis. When the internal aldol reaction of 8 was conducted at 20 °C for 9 h, 9 and 10 were obtained in 90% yield and a ratio of 4:1. Silylation of 9 with bromomethyldimethylsilyl chloride afforded 11 in 95% yield. Silyl ether 11 and the diastereomeric silvl ether were easily and conveniently separated at this stage by silica gel column chromatography on a preparative scale.

The required stereochemical relationship about  $C(\alpha)$  and  $C(\beta)$ of the  $\gamma$ -lactam core was established by tri-*n*-butyltin hydridemediated radical-chain cyclization which transformed 11 cleanly into the *cis*-fused  $\gamma$ -lactam 12.<sup>5</sup> Cleavage of the benzyl ether of 12 (H<sub>2</sub>, Pd-C) and Dess-Martin periodinane oxidation provided the aldehyde 13 in ca. 90% yield from 12. The next step, the attachment of the 2-cyclohexenyl group to the formyl carbon and the establishment of the remaining two stereocenters, was accomplished in a remarkably simple way. 2-Cyclohexenyl-tri-n-butyltin (from Pd-(0)-catalyzed 1,4-addition of tributyltin hydride to 1,3-cyclohexadiene)6 was sequentially transmetalated by treatment with 1 equiv of n-butyllithium and 1 equiv of zinc chloride to form 2-cyclohexenylzinc chloride in THF solution. Reaction of this reagent with the aldehyde 13 furnished the desired formyl adduct stereoselectively (20:1) in 88% yield.7 Tamao-Fleming oxidation8 of 14 gave the triol 15 in 92% yield. Ce(IV)-induced oxidative cleavage of the PMB group of 15 afforded the triol ester 16 which was hydrolyzed to the corresponding  $\gamma$ -lactam-carboxylic acid using 3 N lithium hydroxide in aqueous THF at 4 °C. This acid was converted to salinosporamide A (1) (65% overall yield) by successive reaction with 1.1 equiv of bis-(2-oxo-3-oxazolidinyl) phosphinic chloride (BOPCl) and pyridine at 23 °C for 1 h (to form the  $\beta$ -lactone) and then 2 equiv of triphenylphosphine dichloride in CH<sub>3</sub>CN-pyridine at 23 °C for 1 h. The identity of synthetic 1 and natural salinosporamide A was established by comparison measurements of <sup>1</sup>H and <sup>13</sup>C NMR spectra, mp and mixed mp (168-170 °C), optical rotation, IR and mass spectra, and chromatographic mobilities in three different solvent systems.

There are a number of steps in the synthesis of 1 that require comment. The direct conversion of 6 to 7 with acrylyl chloride

under a wide variety of conditions gave considerably lower yields than the process shown in Scheme 1 mainly because of competing O-acylation and subsequent further transformations. So far, quinuclidine has proved superior to other catalytic bases, for example, 1,4-diaza[2.2.2] bicyclooctane, for the cyclization of **8** to **9**. As indicated just above, the attachment of the 2-cyclohexenyl group to aldehyde **13** to form **14** worked best with the reagent 2-cyclohexenylzinc chloride.<sup>7</sup> Attempts to form **14** from **13** using Lewis acid-catalyzed reaction with tri-*n*-butyl-2-cyclohexenyltin were totally unsuccessful. The saponification of methyl ester **16** at temperatures above +5 °C led to lowered yields of the required carboxylic acid. Finally, the one-flask  $\beta$ -lactonization and chlorination reactions leading to **1** were remarkably clean and probably proceed in >90% yield per step.

In summary, this paper describes an efficient and short total synthesis of salinosporamide A that is capable of providing substantial quantities of this currently rare substance for further biological study, especially to determine its potential as an anticancer agent.

**Acknowledgment.** We thank Pfizer Inc. for generous financial support and Dr. William Fenical for a reference sample of salinosporamide A.

**Supporting Information Available:** Experimental procedures for the synthetic sequences described herein, together with characterization data for reaction products. X-ray diffraction data (CIF) are provided for the *N*-benzyl analogue of **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355–357.
- (2) (a) Reviewed in: Corey, E. J.; Li, W.-D. Z. Chem. Pharm. Bull. 1999, 47, 1–10. (b) Corey, E. J.; Reichard, G. A.; Kania, R. Tetrahedron Lett. 1993, 34, 6977–6980. (c) Corey, E. J.; Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677–10678. (d) Fenteany, G.; Standaert, R. F.; Reichard, G. A.; Corey, E. J.; Schreiber, S. L. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3358–3362.
- (3) (a) Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113–116. (b) Omura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.; Furuya, T.; Fujita, S.; Nakagawa, A. J. Antibiot. 1991, 44, 117–118.
- (a) Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404–2405.
   (b) Mergott, D. J.; Frank, S. A.; Roush, W. R. Org. Lett. 2002, 4, 3157–3160.
   (c) Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J. Org. Chem. 2003, 68, 692–700.
   (d) Yeo, J. E.; Yang, X.; Kim, H. J.; Koo, S. J. Chem. Soc., Chem. Commun. 2004, 236–237.
- (5) (a) Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253-1277. (b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063-2092.
  (c) Stork, G.; Mook, R.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741-3742. (d) Stork, G.; Sher, P. M.; Chen, H. L. J. Am. Chem. Soc. 1986, 108, 6384-6385.
- (6) Miyake, H.; Yamamura, K. Chem. Lett. 1992, 507-508.
- (7) The stereochemistry of the conversion 13 → 14, established by the identity of totally synthetic 1 with naturally formed salinosporamide A, is that predicted from a cyclic, chair-formed, six-membered transition state involving addition of the organozinc reagent to the sterically more accessible face of the formyl group. The use of 2-cyclohexenylzinc chloride is critical to successful formation of 14 because none of this product is obtained with 2-cyclohexenyllithium (probably because the initial carbonyl adduct undergoes retroaldol cleavage and decomposition; see: Corey, E. J.; Li, W.; Nagamitsu, T. Angew. Chem., Int. Ed. 1998, 37, 1676–1679).
- (8) (a) Fleming, I. Chemtracts-Org. Chem. 1996, 9, 1–64. (b) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599–7662.

JA048613P